READ AND INTERPRET PLANS AND SPECIFICATIONS
CERTIFICATE II IN BUILDING AND CONSTRUCTION
(PATHWAY – TRADES)
CPCCCM2001A
LEARNER’S GUIDE
BUILDING AND CONSTRUCTION
Read and interpret plans and specifications

CPCCCM2001A

Learner’s guide
Copyright and Terms of Use

© Department of Training and Workforce Development 2016 (unless indicated otherwise, for example ‘Excluded Material’).

The copyright material published in this product is subject to the Copyright Act 1968 (Cth), and is owned by the Department of Training and Workforce Development or, where indicated, by a party other than the Department of Training and Workforce Development. The Department of Training and Workforce Development supports and encourages use of its material for all legitimate purposes.

Copyright material available on this website is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) license unless indicated otherwise (Excluded Material).

Except in relation to Excluded Material this license allows you to:

- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially

provided you attribute the Department of Training and Workforce Development as the source of the copyright material. The Department of Training and Workforce Development requests attribution as: © Department of Training and Workforce Development (year of publication).

Excluded Material not available under a Creative Commons license:

1. The Department of Training and Workforce Development logo, other logos and trademark protected material; and
2. Material owned by third parties that has been reproduced with permission. Permission will need to be obtained from third parties to re-use their material.

Excluded Material may not be licensed under a CC BY license and can only be used in accordance with the specific terms of use attached to that material or where permitted by the Copyright Act 1968 (Cth). If you want to use such material in a manner that is not covered by those specific terms of use, you must request permission from the copyright owner of the material.

If you have any questions regarding use of material available in this product, please contact the Department of Training and Workforce Development.

Training Sector Services
Telephone: 08 6212 9789
Email: sectorcapability.ip@dtwd.wa.gov.au
Website: www.dtwd.wa.gov.au
Contents

Welcome... 5
Qualification overview ... 5
Unit overview .. 6
Skills recognition and recognition of prior learning (RPL).. 8
Resources ... 8
Self-checklist ... 9
About the icons .. 11

Section 1 – Drawing types ... 13
Introduction .. 13
Types of drawings ... 15
Plan types ... 18
Views ... 19
Environmental management plan .. 36

Section 2 – Title panels .. 39
Introduction .. 39
Title panels ... 39
Notes panel ... 43

Section 3 – Dimensions .. 45
Introduction .. 45
Units and terms .. 45
Representing dimensions ... 47
Reduced levels .. 49

Section 4 – Scale .. 53
Introduction .. 53
Paper sizes ... 53
Choosing the correct scale .. 55
Using a scale rule ... 56
Section 5 – Abbreviations and symbols ... 63
Introduction .. 63
Abbreviations ... 63
Symbols ... 64
Legends ... 67

Section 6 – Specifications .. 69
Introduction .. 69
The purpose of a specification ... 70
Tolerances ... 70
Layout .. 71

Section 7 – Finding information on drawings .. 77
Introduction .. 77

Section 8 – Plan-drawing and specification-writing activities 83
Introduction .. 83

Annex A – Unit details

Annex B – Assessments

Annex C – Plans and drawings
Welcome

Welcome to the learner's guide for CPCCCM2001A Read and interpret plans and specifications.

This guide takes you through the process of learning how to find and interpret information in typical plans and specifications for single-dwelling residential construction projects.

Areas of explanation include:

- the types of drawings used and the kinds of information they show
- title panels and the kind of information they show
- dimensions – how they are shown and how to read them
- paper sizes and common scales that are used
- abbreviations and symbols found on drawings
- written specifications.

Qualification overview

This unit of competency, CPCCCM2001A Read and interpret plans and specifications, forms part of Certificate II in Building and Construction (Pathway – Trades), a pre-vocational course for learners seeking to gain an apprenticeship in the building and construction industry. The focus of this course is on developing relevant technical, vocational and interpersonal competencies as well as skills, knowledge and experiences that may be transferable to other industry areas. You will also gain employability skills relevant to an entry level employee of the industry.

The first component of the course consists of seven core units of competency (common to 11 construction trades) and a period of work placement. This component, which would typically be delivered over a one-year period, is designed to provide you with a tradesperson's introduction to the building and construction industry.

In the second component of the course, typically undertaken in the second year of study, you will choose from 10 trade-specific streams of units of competency that enable you to focus your learning on a particular trade such as bricklaying, painting or carpentry.

To progress further in the industry, beyond this introductory level, you will then need to gain an apprenticeship in your chosen trades area, or pursue further training within the building and construction field.

Note: If you are completing this unit as part of a different qualification, your lecturer will give you the relevant information.
Unit overview

This unit describes the performance outcomes, skills and knowledge required to read and interpret plans and specifications in the residential sector of the building and construction industry. It does not cover the commercial sector of the industry.

Competence in this unit will be demonstrated by successful completion of two written assessments – a written theory assessment and a written plan-reading practical assessment.

Some basic information for this unit of competency is provided here. You can find the full unit details at Annex A at the back of this guide.

<table>
<thead>
<tr>
<th>Unit title</th>
<th>Read and interpret plans and specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptor</td>
<td>This unit of competency specifies the outcomes required to read and interpret plans and specifications relevant to construction operations. It includes the identification of types of plans and drawings and their functions, the recognition of commonly used symbols and abbreviations, the identification of key features and specifications on a site plan, the comprehension of written job specifications and the recognition of document status and amendment detail.</td>
</tr>
<tr>
<td>National code</td>
<td>CPCCCM2001A</td>
</tr>
<tr>
<td>Employability skills</td>
<td>This unit contains employability skills.</td>
</tr>
<tr>
<td>Prerequisite units</td>
<td>Nil</td>
</tr>
<tr>
<td>Application</td>
<td>This unit of competency supports achievement of basic reading and interpretation of plans and specifications commonly used in the construction industry.</td>
</tr>
</tbody>
</table>
Element 1 Identify types of drawings and their functions

1.1 Main types of plans and drawings used in the construction sector of the industry are identified.

1.2 Key features and functions of each type of drawing are identified.

1.3 Quality requirements of company operations are recognised and adhered to.

1.4 Environmental requirements and controls are identified from job plans, specifications and environmental plan.

Element 2 Recognise amendments

2.1 Title panel of project documentation is checked to verify latest amendments to drawing.

2.2 Amendments to specifications are checked to ensure currency of information and conveyed to others where appropriate.

Element 3 Recognise commonly used symbols and abbreviations

3.1 Construction symbols and abbreviations are recognised.

3.2 Legend is located on project drawings, and symbols and abbreviations are correctly interpreted.

Element 4 Locate and identify key features on a site plan

4.1 Orientation of the plan with the site is achieved.

4.2 Key features of the site are identified and located.

4.3 Access to site is gained and services, main features, contours and datum are identified.

Element 5 Identify project requirements

5.1 Dimensions for project and nominated locations are identified.

5.2 Construction types and dimensions for nominated locations are identified.

5.3 Environmental controls and locations are identified.

5.4 Location, dimensions and tolerances for ancillary works are identified.

Element 6 Read and interpret job specifications

6.1 Job specifications are identified from drawings, notes and descriptions.

6.2 Standards of work, finishes and tolerances are identified from the project specifications.

6.3 Material attributes are identified from specifications.
Skills recognition and recognition of prior learning (RPL)

You are encouraged to discuss with your lecturer any previous courses or work experience in which you have participated so that it can be recognised. Evidence must be provided.

Resources

Required

Your lecturer will provide the following resources:

- sets of drawings for one-storey or two-storey, single-dwelling houses
- written specifications for one-storey or two-storey, single-dwelling houses.

You will need to provide the following:

- a scale rule with 1:5, 1:10, 1:20, 1:50, 1:100 and 1:200 scales
- writing and drawing tools
- paper
- a USB thumb drive.

Recommended

The resource listed below provides additional information and plan-reading practice. If your lecturer wants you to access this resource, or any other, they will make them available to you.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan-O-Rama</td>
<td>WestOne Services</td>
</tr>
<tr>
<td>An interactive computer-based resource that brings plans to life.</td>
<td><www.westone.wa.gov.au></td>
</tr>
</tbody>
</table>
Self-checklist

As you work through this guide you should return to this checklist and record your progress. Where you understand something and think that you can perform it ‘easily’, congratulations. Where your response is ‘with help’ – revise the material in that section and/or discuss it with your lecturer or other learners in your group.

<table>
<thead>
<tr>
<th>CPCCCM2001A Read and interpret plans and specifications</th>
<th>I understand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element 1 Identify types of drawings and their functions</td>
<td>Easily</td>
</tr>
<tr>
<td>1.1 Main types of plans and drawings used in the construction sector of the industry are identified.</td>
<td></td>
</tr>
<tr>
<td>1.2 Key features and functions of each type of drawing are identified.</td>
<td></td>
</tr>
<tr>
<td>1.3 Quality requirements of company operations are recognised and adhered to.</td>
<td></td>
</tr>
<tr>
<td>1.4 Environmental requirements and controls are identified from job plans, specifications and environmental plan.</td>
<td></td>
</tr>
<tr>
<td>Element 2 Recognise amendments</td>
<td>Easily</td>
</tr>
<tr>
<td>2.1 Title panel of project documentation is checked to verify latest amendments to drawing.</td>
<td></td>
</tr>
<tr>
<td>2.2 Amendments to specifications are checked to ensure currency of information and conveyed to others where appropriate.</td>
<td></td>
</tr>
<tr>
<td>Element 3 Recognise commonly used symbols and abbreviations</td>
<td>Easily</td>
</tr>
<tr>
<td>3.1 Construction symbols and abbreviations are recognised.</td>
<td></td>
</tr>
<tr>
<td>3.2 Legend is located on project drawings, and symbols and abbreviations are correctly interpreted.</td>
<td></td>
</tr>
<tr>
<td>Element 4 Locate and identify key features on a site plan</td>
<td>Easily</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>4.1 Orientation of the plan with the site is achieved.</td>
<td></td>
</tr>
<tr>
<td>4.2 Key features of the site are identified and located.</td>
<td></td>
</tr>
<tr>
<td>4.3 Access to site is gained and services, main features, contours and datum are identified.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element 5 Identify project requirements</th>
<th>Easily</th>
<th>With help</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Dimensions for project and nominated locations are identified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 Construction types and dimensions for nominated locations are identified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 Environmental controls and locations are identified.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4 Location, dimensions and tolerances for ancillary works are identified.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element 6 Read and interpret job specifications</th>
<th>Easily</th>
<th>With help</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Job specifications are identified from drawings, notes and descriptions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2 Standards of work, finishes and tolerances are identified from the project specifications.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 Material attributes are identified from specifications.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
About the icons

Note that not all icons may appear in this guide.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
</table>
| ![Performance criteria icon]() | **Performance criteria**
This icon indicates the performance criteria covered in a section. The performance criteria contribute to the elements of competency that you must demonstrate in your assessment. |
| ![Activity icon]() | **Activity**
This icon indicates that there is an activity for you to do. |
| ![Group activity icon]() | **Group activity**
This icon indicates that there is an activity for you to do with a partner or in a group. |
| ![Discussion icon]() | **Discussion**
This icon indicates that there will be a discussion, which could be with a partner, a group or the whole class. |
| ![Research icon]() | **Research**
This icon indicates that you are to do a research activity using the internet, texts, journals or other relevant sources to find out about something. |
| ![Case study icon]() | **Case study**
This icon indicates that there is a case study or scenario to read. |
| ![Think icon]() | **Think**
This icon indicates that you should stop and think for a moment about the point being made or the question being asked. |

You will also see the following characters used throughout this guide, where there’s a case study or activity that’s specific to a particular trade.

- **Dave**
A bricklayer

- **Emma**
A painter

- **Liam**
A tiler

- **Katherine**
A carpenter

- **Jim**
A supervisor

- **Christine**
An apprentice

- **Jeremy**
An apprentice
Read and interpret plans and specifications

CPCCCM2001A
Section 1 – Drawing types

Introduction

Designers need construction drawings to be able to translate their clients’ ideas into a practical representation of what they want. These drawings let clients see that their ideas have been interpreted correctly.

When clients are happy with the drawings, a builder/main contractor can then provide a firm estimate of the building costs. Once the estimate has been approved and the project confirmed, the builder/main contractor gives these plans to other contractors or subcontractors who then start building.

A complex project may require hundreds of sheets of drawings, while a simple building project like a pergola may need just one sheet. Project drawings form an important part of the project contract between the client and the builder/main contractor and are therefore legal documents.

During construction, the building should be built exactly as shown on the drawings, unless there is a written instruction issued by the architect or client to the builder/main contractor to make a change.

When you’ve completed Section 1, you'll have some of the basic skills you need to be able to interpret the information found in construction drawings.

Performance criteria

1.1 Main types of plans and drawings used in the construction sector of the industry are identified.

1.2 Key features and functions of each type of drawing are identified.

1.3 Quality requirements of company operations are recognised and adhered to.

1.4 Environmental requirements and controls are identified from job plans, specifications and environmental plan.

3.2 Legend is located on project drawings, and symbols and abbreviations are correctly interpreted.

4.1 Orientation of the plan with the site is achieved.

5.3 Environmental controls and locations are identified.

Note: For this section you'll need to look at a set of house drawings supplied by your lecturer. This guide will refer to these drawings as the class set.
Activity 1.1 Project participants

With a partner, discuss the following three participants in a typical construction project. Try to describe your understanding of who each one is and how they might use the project plans, then discuss your findings with the rest of the class.

The client

The builder/main contractor

Other contractors or subcontractors

Activity 1.2 Importance of drawings

Complete these sentences to explain the importance of construction drawings.

Construction drawings are necessary so that:

- the ____________________________ can translate the client’s ideas into a definite, practical representation of what they want

- the ____________________________ can ensure that their ideas have been correctly interpreted by the designer

- the ____________________________ can give a firm estimate of what the building will cost

- the ____________________________ and sub__________________________ know exactly where and how to construct the building.
Types of drawings

There are many types of construction drawings that are necessary for a building to be built correctly.

There are five main types of drawings used in construction:

• architectural
• engineering
• electrical
• hydraulic
• mechanical.

Activity 1.3 Main types of drawings

A description of each drawing type is listed here. Read each description to work out which drawing type it is, then fill in the blank for each one.

_________________________ drawings are drawn up by an architect. They show important information such as size of the building, the layout, some details of materials to use, and where windows and doors are located.

_________________________ drawings show details of electrical fittings such as light fittings, light switches and power points. Most residential architectural drawings come with an electrical plan.

_________________________ drawings are concerned with the strength of the building. They show details such as the size of concrete members or the size of reinforcing steel and where it should be used.

_________________________ drawings show details of plumbing fixtures such as copper and PVC pipes, taps, drains, pumps and pressure relief valves.

_________________________ drawings show details of special mechanical equipment that may be in the building. These could include air conditioners or ventilation shafts.

Not all construction projects require all of these drawings; it depends on the size and complexity of the building. For this unit, we will be dealing mainly with architectural drawings.

Drawings for construction projects can be created by a range of people, depending on the project. These include an architect, a building designer, a draftsperson, a builder or even the client. To keep things simple, the terms ‘designer’ and ‘draftsperson’ will be used most in this guide to indicate the person who draws the plans.
Activity 1.4 What’s on drawings?

Look at the table below and tick which drawing type you think each item would be found in. Some items might appear in more than one drawing.

<table>
<thead>
<tr>
<th>Item</th>
<th>Architectural</th>
<th>Engineering</th>
<th>Electrical</th>
<th>Hydraulic</th>
<th>Mechanical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door positions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drains</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiling fans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic gates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water pipes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoke detectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel bridges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Drawings, especially in the residential sector of the industry, don’t show all the details of the building. For example, the following part plan of a house, shows the outline of the roof (marked with a dashed line like this — — —) so that the roof carpenter knows that it’s a ‘hip’ roof, as shown in the photo.

However, the plan doesn’t show any details of how the roof framing should be constructed. That’s because there are Australian Standards® that specify how roof framing should be constructed (or how trusses should be made and erected if they are used instead).

Also, it’s assumed that the carpenters constructing the roof framing will be competent tradespeople who know what they’re doing. The written specifications for the job will also state which standard is to be followed for each part of the build.

There are also ‘standard’ ways of doing things, especially in the housing sector. For example, if a metal fascia is specified to be fitted at the gutter line, detailed instructions or drawings aren’t necessary, because there’s a standard way of doing that and the contractor will know how.

Note: The above applies more to low-to-medium-cost housing. At the high end (more expensive part) of the housing industry and in the commercial/industrial sector, where the construction isn’t so standard, the architect may need to provide more details on what’s required.
Activity 1.5 Project roles

Think about each of the following statements and decide whether they are true or false.

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>The designer is the person who constructs the building.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawings show all of the details of a building.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The builder/main contractor is responsible for the overall construction of the building.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The subcontractors are responsible for constructing different parts of the building.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Builders/main contractors always design the building.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plan types

The number and type of plans in a set of working drawings for a new building will vary from project to project. Generally, the bigger or more complex the project, the more plans there will be. Each plan provides a different view of the building, and when viewed together, they give a complete picture of the project.

Plans are the key documents everyone on the construction site uses. Let’s look at the main plan types you’ll need to know.
Section 1 – Drawing types

Views

Construction drawings belong to one of four types of view: – plan, elevation, section and detail. This refers to the point a drawing seems to be viewed and drawn from.

Plan view – a view from above, looking down

A plan view shows the layout of the proposed building or the site. It can show the length and width of things (for example, rooms) and where things are positioned.

A plan view could be a plan of:
• the block of land the building is to be built on – a site plan
• just the building itself – a floor plan
• specific parts of the building (that might also be shown on a floor plan); for example, an electrical plan showing positions of lights, etc.

Site plans

A site plan shows the entire block of land, or at least the part of the block where the building will be. They are drawn at a small scale so that all the required information fits on the sheet. Site plans show existing features such as trees or other structures that may already be on the site. Site plans also show information like:
• boundaries
• north point
• contour lines
• proposed building outline
• datum point.

We will explore these later in the unit.

They also typically show things like:
• driveways and paths
• fences
• retaining walls
• clothes lines.

These are called ‘ancillary’ works (that is, additional to the main building works and usually of a relatively minor nature). In some cases, the ancillary works are not included in the building contract; the client or owner organises them later.

When you’re working with a site plan, it’s essential you read it the right way up; with some projects this will not be as easy as it sounds. The easiest way is to choose a feature shown on the plan and align the plan with this feature on the ground. Often the street is the best feature to use. To use the street to align the plan, stand in the street facing the site and turn the site plan to face the same way. This is referred to as ‘orientation’.
Here is an example of a site plan for a residential project. You’ll see that lots of parts of it are numbered. A description of these numbered features is provided after the plan. Find each numbered feature on the site plan, then read the information about it.
Key to site plan

1. **Block identification.** When land is subdivided, each block is given a lot number. The street number is allocated later.

2. **Boundary.** The boundary is the imaginary line that defines the block of land. At each corner is a small wooden peg with the numbers of the adjacent lots stamped onto a metal plate. If a boundary changes direction, a peg is located at that point too.

3. **Road identification.** The name of the road shows where the front of the block is.

4. **Verge.** The verge is the area of land between the block and the road. It is not part of the block and must not be built on (apart from a crossover) or damaged in any way. It usually has services running beneath it (water, telephone, etc).

5. **North point.** The direction of north is shown to assist in orientating the drawing with the block when on site.

6. **Proposed building.** The location of the proposed house is shown, usually just as an outline.

7. **Finished floor level.** The level of the finished floor of the house is given.

8. **Adjacent properties.** The adjacent lot numbers are shown, and sometimes indications of existing structures are given.

9. **Existing fences.** Any existing boundary fences should be shown.

10. **Easement.** An easement is a part of the land over which another party has some sort of legal right. In this case, a strip near the rear of the block is an easement for a council stormwater line to be laid. It still belongs to the landowner but the council has the right to lay and maintain a stormwater pipe there, so no structure is allowed to be built over this area.

11. **Existing trees.** If there are any features on the block that are to be left undisturbed they are clearly indicated.

12. **Contour lines.** These are imaginary level lines that indicate the shape of the land (you might have seen these on maps.) In this site plan, they indicate that the land slopes down from the north corner to the south corner.

13. **Contour level.** This indicates the ‘reduced level’ of the contour (reduced levels are explained in Section 3 Dimensions of this guide). In this case, they are shown at one-metre intervals, but this varies depending on the steepness of the land.

14. **Datum.** This is a point on or near the block that all heights for the project are measured from. It is explained more fully in Section 3.

15. **Angle of boundary intersection.** This indicates at what angle the boundaries meet. It is not always shown, especially if the block has square corners.
16. **Location of power connection.** This indicates to the electrician where the electrical connection will be made. In this case, the block has underground power, but if overhead lines pass the block, the nearest power pole may be shown.

17. **Boundary length.** This indicates the length of each boundary.

18. **Setback.** This is the distance from the front boundary to the nearest part of the building. A minimum distance for this is set by the local authority (council) and varies depending on the zoning of the land.

19. **Offset.** Similar to the setback, the offset indicates how far from the side boundary the building is to be. There are by-laws regulating the minimum distance for this, mainly to minimise the spread of fire.

20. **Driveway.** This indicates where and how wide the driveway should be.

21. **Crossover.** This is the continuation of the driveway across the verge.

22. **Path.** Any paving included in the contract is shown.

23. **Clothes hoist.** The position of the clothes hoist is indicated.
Floor plans

Floor plans show the layout of the house, literally a ‘plan of the floor’. They provide a lot of the information we need to know to help us construct the building, such as:

- dimensions and measurements
- wall thicknesses
- positions of internal doors
- window positions
- locations of wet areas
- outline of the roof design.

These are just a few examples of the kind of information we can find on a floor plan.
Activity 1.6 Floor plans

Look at the class set of drawings, locate the floor plan and answer the following questions. If you’re not sure about some of the abbreviations, check with your lecturer.

• How many basins are there in the ensuite?

• Is the meter box located near the front or the back of the house?

• How wide are the door frames to bedrooms 2, 3 and 4?

• How wide is the door frame to the utility room?

• Which rooms have corner windows?

• List two rooms that have bulkheads.

• Does the walk-in robe have a door?

• What size doors do both toilets have?

• The solar hot water system sits above two rooms – what are they?

• How many downpipes does the house have?

• If you were standing in the living room, which room would you have to walk through to get to the kitchen?
Electrical plans

Most sets of house drawings have a separate electrical plan. This is because if all the information needed for the electrical layout was on the main floor plan, it would be too cluttered.

Pictured here is part of an electrical plan and its legend. There are some strange-looking symbols on it – circles, semicircles, etc. What these represent is shown in the legend, which will be somewhere on the drawing.

What do you think the curving dashed lines on the electrical plan represent? What are they telling the electrician?
Activity 1.7 Electrical plans

Take a closer look at the example electrical plan on the previous page, and answer the following questions. If you’re not sure about some of the abbreviations, check with your lecturer.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there an exhaust fan in the toilet?</td>
<td></td>
</tr>
<tr>
<td>How many ceiling lights are there in the utility room?</td>
<td></td>
</tr>
<tr>
<td>How many lights does the switch (next to the door) in the utility room operate?</td>
<td></td>
</tr>
<tr>
<td>How many double power points (GPOs) are there in the utility room?</td>
<td></td>
</tr>
<tr>
<td>How many smoke detectors are shown?</td>
<td></td>
</tr>
<tr>
<td>The switch in the bathroom operates two things. What are they?</td>
<td></td>
</tr>
</tbody>
</table>

Elevation – view from a side

An elevation shows the proposed building as viewed by someone standing on the ground, looking straight at the building. Usually an elevation drawing is done for each side of the building, so for a typical house there will be four, but a building with more than four sides such as a hexagonal house would require six elevations.

Elevations can show things that can’t be shown in plan view; for example, the height of the windows and how far the windowsills are from the floor. This would be difficult to show clearly on the floor plan.
Elevations are often labelled ‘North elevation’, ‘West elevation’, etc. Alternatively they can be labelled ‘Elevation 1’, ‘Elevation 2’, or ‘Elevation A’, ‘Elevation B’. In some instances they may be named after the street they face, for example, Smith Street elevation.

Whichever way the elevators are labelled, when they are referred to in other plans, the same labels are used. This is called ‘referencing’.

Activity 1.8 Labelling

How are the elevations in the class set labelled? ___
__

Find the corresponding labelling on the floor plan. Which elevation shows the front door? ___
__
On this elevation, the window head and sill heights are shown in number of brick courses. Why do you think this is so?

Activity 1.9 Elevations

Look at the elevations in the class set and list five different things these drawings show.

1.
2.
3.
4.
5.
Activity 1.10 Your house

Think about the rear or back elevation of your own house and make a sketch of it below. Try to remember all the doors and window positions and other details like pergolas, materials, hot water tanks, etc that would be included in an actual elevation drawing.

Section – a slice through the building

A section shows a view of the building as though it has been sliced through with a giant chainsaw so that the inside of the building is exposed, including the inside of things like walls, door frames and roof members. This helps the builder and contractors know how parts of the building go together. One floor plan may have several section views related to it so that various features inside the building can be shown.

Sections are usually labelled ‘A-A’, ‘B-B’, ‘C-C’ and so on, indicating each end of the ‘slice’. The floor plan shows where each ‘slice’ comes from. The section shown in the example on the next page is called ‘X-X’.
Read and interpret plans and specifications

The floor plan is marked with the symbols to show that the section is taken through the bathroom, passage, gallery and home theatre/multimedia room.

The red line added to the floor plan below shows exactly where section X-X cuts through the house.
Offset sections

Sometimes the slice of the building that the designer wants to show is not a straight cut or slice through the building. This is because on some parts of the building, if you cut a straight slice you would see the inside and the outside on the same section – sometimes that might be beneficial, but usually the construction worker wants to see the inside of the building.

Take a look at the following example of an offset section W-W.

Reproduced or adapted with the permission of WA Country Builders.

The red line on the floor plan below shows exactly where section W-W cuts through the house.

Reproduced or adapted with the permission of WA Country Builders.
Activity 1.11 Sections

Get together with a partner, and look in your class set of drawings to find the sheets that show the floor plans and the sections. Locate section X-X.

Discuss with your partner what room(s) section X-X shows and note this in the table below. Then find where this section is indicated on the floor plan. How many different trades would need to use this section view for information about their part of the construction and why? List the trades and the reasons you and your partner come up with, then compare your list with others in the class.

Room(s) shown in section X-X:

<table>
<thead>
<tr>
<th>Trade</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Detail – a close-up view

A detail is a view that shows important details of certain parts of the building, hence its name. Details are drawn at a large scale so that the builder can see exactly how that part of the job is to be done.

Details can be drawn in both plan view and section view. This gives everyone involved in the construction a greater understanding of what the designer wants.

This detail drawing shows how the wall, floor slab and footing are to be built in a certain part of the house.

Can you see what this detail, W1, applies to in the house? (Hint: Look at Section W-W.).
Detail views are drawn at a much larger scale, so they can show many more components of individual rooms that would be hard to show on the floor plan. We can also see more detail of things like kitchen cabinets and bathroom vanities. It’s quite common to have detail views of areas such as:

- kitchens
- bathrooms
- laundries
- utility rooms
- theatre/multimedia rooms.

The example shown here is a layout for the kitchen.

Detail floor plans or layouts often have a symbol showing the direction of the detail views like this one: 1 2 3 4.

This symbol is used to help you understand where each view fits into the layout.

If you look at the kitchen layout, you’ll see this symbol in the centre. Notice that view K1 is looking towards the kitchen sink and window, and view K2 is looking at the hotplate, range hood and appliance cupboards.
Here are the details for K1 and K2.

Activity 1.12 Detail drawings

Take a close look at the two sectional details of the bathroom below – B2 and B3 – then answer the questions that follow.

Which view shows the vanity cupboard?

Is the shower screen shown in one view, or both?

How high is the top of the bath above the floor level?

Which view shows a section of the bath?

How many rows of tiles are there above the vanity cupboard?

Are taps shown in both of the views, or just one?
Location plans

A location plan can show many blocks of land (sites) in a particular location. You may have seen one on a sign next to a new land subdivision where blocks are going up for sale. Location plans aren’t typically included in a set of construction drawings.

The location plans show the shape and size of each block, and which street or road they are situated on. They give potential purchasers or developers a better idea of where their block of land is located compared to others in the area. Sometimes when these plans are shown on signs, they include the price of each block.

On this example of a location plan, you can see the blocks of land have many different shapes and sizes and the streets are clearly defined.

On these types of plans each block is given a lot number. These are generally consecutive numbers (unlike street numbers that are even on one side of the street and odd on the other). Lot numbers are used on official documents like certificates of title or future building applications even after street or house numbers have been allocated.

Environmental management plan

An environmental management plan may be required for a project, depending on the type of project and where it is located. It can be a separate written document, included in the specifications, or drawn as a plan, similar to a project site plan. This plan is not included in a typical set of construction drawings but should be available on site for everyone involved in a project to follow.

Environmental management includes the following controls:

- land disturbance, eg management of stormwater, dust control and erosion
- noise and vibration, eg working only during prescribed site operating hours and monitoring noise and vibration levels of vehicles and equipment
- waste management, eg minimising waste, sorting waste into the appropriate bins and leaving the site clean and tidy at the end of each day
- hazardous goods, eg ensuring safety data sheets (SDSs) are available and correct storage procedures are followed.
Activity 1.13 Environmental management controls

1. Think of, and write down, three more environmental controls that might apply to a building project in your area.
 a) ____________________________
 b) ____________________________
 c) ____________________________

2. List two factors you think would be considered in deciding where to locate the skip bin for construction waste for a residential building project.
 a) ____________________________
 b) ____________________________

3. Why do you think it is important that toxic fluids or substances are not allowed to run off into waterways or drains?
 __
 __
 __

Activity 1.14 Environmental management strategies

Think about construction work and/or worksites you may have seen. Have you witnessed any form of environmental management such as dust control or waste management?
Discuss with the rest of the class what you saw and why you think such measures were taken, and make notes below.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
Read and interpret plans and specifications

CPCCCM2001A
Section 2 – Title panels

Introduction

In this section we’ll look at title panels, or title blocks, an essential part of all construction drawings.

Performance criteria

1.3 Quality requirements of company operations are recognised and adhered to.
2.1 Title panel of project documentation is checked to verify latest amendments to drawing.
2.2 Amendments to specifications are checked to ensure currency of information and conveyed to others where appropriate.

Title panels

A title panel (sometimes called a title block) is found on all drawings. It identifies which project the drawing is for and also gives some specific information about that particular drawing sheet. The title panel can be found at the bottom or the side (usually the right-hand side) of the drawing sheet.

Where the title panel is located and what it looks like are decided by the drafting or architectural company. They will usually incorporate company styles, colours and logo into it. Employees who create the drawings will be required to follow company procedures by inserting and completing the title block correctly.
Here is an example of a title block.

<table>
<thead>
<tr>
<th>Site address:</th>
<th>LOT 437, SOUTH ST, MARYVILLE WA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client:</td>
<td>JM & KL JOHNSON</td>
</tr>
<tr>
<td>Project #</td>
<td>2012/15</td>
</tr>
<tr>
<td>Builder:</td>
<td>HOTSHOT HOMES</td>
</tr>
<tr>
<td>Project name:</td>
<td>JOHNSON RESIDENCE</td>
</tr>
<tr>
<td>Drawn by:</td>
<td>MW</td>
</tr>
<tr>
<td>Date:</td>
<td>July 2011</td>
</tr>
<tr>
<td>AMENDMENTS:</td>
<td>5/10/2011 Window added to study</td>
</tr>
<tr>
<td></td>
<td>8/11/2011 Bed 3 robe deleted</td>
</tr>
<tr>
<td>Title:</td>
<td>FLOOR PLAN</td>
</tr>
<tr>
<td>Scale:</td>
<td>1:100</td>
</tr>
<tr>
<td>Drawing #</td>
<td>3 OF 7</td>
</tr>
</tbody>
</table>
Activity 2.1a Parts of a title panel

Have a close look at the information in the example title panel. Write the numbers from the title panel into the table below to indicate what each part of the title panel is telling you. An example has been done for you.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The project number</td>
</tr>
<tr>
<td></td>
<td>The name of the job or project</td>
</tr>
<tr>
<td></td>
<td>The name of the person or company who will be constructing the building</td>
</tr>
<tr>
<td></td>
<td>Where the building is to be built</td>
</tr>
<tr>
<td></td>
<td>The number of this drawing and how many there are in the set</td>
</tr>
<tr>
<td></td>
<td>What is shown on this drawing</td>
</tr>
<tr>
<td></td>
<td>The scale of this drawing (on some drawings there may be some views at one scale and some at another)</td>
</tr>
<tr>
<td></td>
<td>The date this drawing was originally drawn</td>
</tr>
<tr>
<td></td>
<td>Who the building is being built for – the person, company or organisation who has commissioned the building</td>
</tr>
<tr>
<td></td>
<td>The name of the person who drafted the drawing (sometimes only their initials)</td>
</tr>
<tr>
<td></td>
<td>The date and details of any amendments made to the project as it progresses</td>
</tr>
</tbody>
</table>
Amendments

An amendment is a change to a project that is decided upon after the drawings have been finalised. They are sometimes called revisions. These changes might happen because the client requests them (for example, the client may want a larger window in the study) or because the builder realises something will work better if it’s done a little differently. Either way, amendments need to be shown on paper so that everyone knows about them; they are constructed correctly; and there are no arguments later. So it’s important to always use the latest version of the plans.

If this means that the building will vary from the way it was shown in the original contract documents, a written instruction will be issued by the architect/client and, if necessary, the drawings will be amended (changed) and re-issued.

Activity 2.1b Parts of a title panel – amendments

Have another look at the example title panel and answer the following questions.

1. How many amendments have been made to the drawing?

2. What date/s did this/these occur?

3. What was amended?
On a very large project (such as the Sydney Opera House), there are literally thousands of drawings required and it is a full-time job for a site clerk to ensure that everyone receives up-to-date drawings to work from.

Old, out-of-date drawings should be stamped and stored rather than destroyed, in case there is any dispute at a later date.

Notes panel

Some drawings have a ‘Notes’ panel as well as a title panel. The information in this panel is important, and must not be overlooked.

Notes

- Verandah posts to have 12 × 12 chamfer.
- Downpipe locations may be varied as necessary.
- Letterbox may be positioned either side of the driveway.
Activity 2.2 Finding information in a title panel

Look at the title panel of the floor plan in the class set and answer the following questions.

1. What is the name of the project?
2. Who is the client?
3. What is the job address?
4. What is the model number?
5. What is the job number?
6. What date was it signed and witnessed by the owners?
7. What number sheet is this? How many sheets are there in total?
8. What number revision is this?
9. What is the date of the latest revision?
10. What is the builder’s name?

Activity 2.3 Communicating changes

Amendments to plans and specifications need to be conveyed to all the personnel involved in a building project so that everyone does their job correctly. The methods of communication used might vary depending on who is involved. Have a look at the personnel pairs listed below and write down one or more methods of communication each one might use. Think about verbal and non-verbal options. An example has been done for you.

<table>
<thead>
<tr>
<th>Pair</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor informing contractor</td>
<td>Emailing the amended drawing to the contractor. Phoning the contractor and describing the change.</td>
</tr>
<tr>
<td>Architect informing client</td>
<td></td>
</tr>
<tr>
<td>Brickie informing apprentice</td>
<td></td>
</tr>
<tr>
<td>Builder informing accounts department</td>
<td></td>
</tr>
</tbody>
</table>
Section 3 – Dimensions

Introduction

Dimensions are a very important part of construction drawings. Without them, no-one would know what size anything should be. In this section, we’ll look at some of the different types of dimensions and how they are shown in drawings.

Performance criteria

5.1 Dimensions for project and nominated locations are identified.
5.2 Construction types and dimensions for nominated locations are identified.

A good designer or draftsperson will make sure that a drawing has all the information needed about the length, width and height of everything that is to be built.

Length and width are usually indicated with rows of ‘dimension lines’ that align with the various features of the drawing. Alternatively, there might be a note near the feature – for example, ‘830 wide × 25 cm opening’.

Units and terms

In Australia, the metric system is used for all construction dimensions. Dimensions on drawings are shown either as millimetres or as metres, although the abbreviations for these (mm or m) are rarely shown. This doesn’t cause confusion, as it should be obvious which is meant – a bedroom shown as 3200 wide is not going to be 3200 metres!

Centimetres aren’t used in plans, or in construction generally, with the exception that a tree may be shown on the site plan as ‘40 cm girth’. (It may be a requirement of the contract that some existing trees on the block are to be left untouched.)

Dimensions in millimetres can be shown with or without a thousands separator, such as a comma or space. For example, 3200, 3 200 or 3,200 can all be used. In the following example, the designer has used a comma as a thousands separator.
Sometimes metres are shown with a decimal point. They may be shown to one, two or three decimal places. For example, the width of the building block may be shown on the site plan as 35.0, 35.00 or 35.000 (which all mean the same thing). In the following example, the designer has shown the site plan dimensions following the same method as the floor plans using commas.

In some situations other ways of showing sizes may be used. For example, windows in a brick building are shown as brick courses high × bricks wide, such as 12 c × 4.5. This makes perfect sense to a bricklayer (and to you when you’re more familiar with the jargon used in the industry).

‘Length’, ‘width’ and ‘height’ are terms used as usual, but the term ‘depth’ can have a different meaning when used with building sizes. It can mean the distance from the front to the back of something. For example, a block of land that measures 35.0 m by 55.0 m would be described as 35.0 wide and 55.0 deep, although we would also say that the side boundary is 55.0 long.

Depth is also used to describe fixtures such as cupboards and wardrobes – a 600 deep cupboard indicates that it is 600 mm from front to back.
Activity 3.1 Dimensions

Read each of the following statements, then circle whether they are true or false.

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>A thousands separator must be shown on all dimensions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centimetres are used regularly on plans and in the construction industry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth is a word we can use to describe the distance from front to back.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window widths and heights are always shown in millimetres on plans and drawings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Australia, dimensions on drawings are always shown either as millimetres or as metres.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Representing dimensions

At first glance, the rows of dimensions on the floor plan of a house may look confusing. To make the dimensions easier to find and read, the draftsperson labels some of them. Buildings with a simpler layout may show just the dimensions without the labels. If you’re not sure which dimension goes with which part of a plan, use a ruler or other straight edge to line them up against and make it easier to check.

The dimension style used in the drawing on the next page has large dots as the terminators of a dimension (to show where it starts and stops). Other drawings might use arrows or slashes as terminators. It’s really up to the draftsperson or company style.

![Terminators Example]

In the class set, the designer uses dots as terminators.
Read and interpret plans and specifications

Reproduced or adapted with the permission of WA Country Builders.
Section 3 – Dimensions

Activity 3.2 Dimensions

Complete the following information about the dimensions in the floor plan on the previous page.

1. The outer row (14,100 o/all) shows the overall width of the house. What does the row immediately below it (starting with 500) refer to?

2. The next row (starting with 230) shows the thickness of the outer wall, the width of the walk-in robe (______________), the thickness of the inner wall (______________) and so on.
 (Occasionally, a dimension is shown inside the building, such as the 500 near the ensuite doorway.)

3. In the master suite, what does 830 × 25 c mean?

4. Does the third row of dimensions (starting with 230) add up to the 4890 in the second row?

5. What do you think you should do if a row of dimensions doesn’t seem to add up correctly?

6. What does the 820 in the master suite signify?

Reduced levels

Reduced levels indicate heights on a drawing. They are usually shown to two decimal places only – that is, to the nearest 10 mm.

Reduced levels may have ‘RL’ in front of them to show that the figure represents a reduced level, for example, RL 12.65. Another draftsperson might put them in a little box instead, like this:

An RL on a drawing indicates the height of that point relative to a given reference point. This reference point is called the job datum (or sometimes the temporary benchmark or TBM) and is a fixed, unmovable point for the project. It may be marked by a nail driven into a metal plate on the kerb at the front of the block, or even a nail in the road. It will be given a height value by the architect and all points on the site can be related in height to this point (ie above or below).

The RL of the job datum is often an arbitrary number decided by the architect or surveyor, and is usually a round number such as 10.00 or 20.00.
The job datum is *never* given a value of 0.00. Do you know why?

The job datum may sometimes be related to the Australian Height Datum and have an RL that reflects this, such as 18.635. What this actually means is the datum is 18.635 metres above sea level.

In 1971 it was decided that the Australian Height Datum would be taken from the mean sea level during 1966–1968. It was assigned a value of 0.000 m. Since then all levels relating to the Australian Height Datum have been taken from this point.

Activity 3.3 Sea level

Look at the diagram below. How high above sea level is the house?
Activity 3.4 Australian Height Datum

Discuss with the class how high you think your current location is above sea level, then write your answer here.

Tip: You can download an app which will give your current height above sea level from any smartphone.

__

__
Read and interpret plans and specifications

CPCCCM2001A
Section 4 – Scale

Introduction

Just about every drawing used in the construction industry is drawn to scale. A small but important detail may be drawn full size – that is, at a scale of 1:1 – but this is quite rare.

A standard range of scales is used, from 1:2 (the drawing is half of the real-life size) down to 1:500 (the drawing is one-five-hundredth of the real-life size). The scale the draftsperson will use will depend on what needs to be shown in the drawing and the size of the sheet of paper used.

In this section we’ll look at which scales are commonly used and how to use a scale rule.

Performance criteria

5.1 Dimensions for project and nominated locations are identified.
5.2 Construction types and dimensions for nominated locations are identified.

Paper sizes

It’s obviously not practical to draw a building at full size, so a suitable scale and paper size must be chosen.

We use the metric system of paper sizes. It’s a logical system (except that the bigger the number, the smaller the paper!). See if you can work it out by stating the size of the sheets of paper shown on the following page.
Activity 4.1 Paper sizes

See if you can work out the metric paper size system. Look at the sheets of paper shown below and write the size of each one in the spaces.

This guide you are reading is _________ size.

A sheet twice as big is _________ size.

A sheet twice as big as that is _________ size . . . and so on.

Most drawings in the residential sector of the industry are on A3 or A2 size paper. There are also A1 and A0 sizes (A0 paper is quite large – 841 mm × 1189 mm). These sizes are sometimes used on projects where the whole floor plan of a large building needs to be shown on a single sheet.

Ratios

Scale is depicted as a ratio. An example is 1:10, which when spoken is said ‘one to 10’ or ‘one in 10’. This means that, at that scale, each millimetre on the drawing represents 10 millimetres on the building.

The scale of a drawing is chosen so that it can show the builder sufficient detail for the building to be constructed the way the architect or designer wants.
Here you can see how the image of the fifty-cent piece has been reduced by five times and ten times its normal size through the use of scaling.

Activity 4.2 Common scales

Discuss with a partner which scales are most commonly used for each drawing type, and write them into the spaces below. Have a look at some plans if you need to.

<table>
<thead>
<tr>
<th>Scales</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>Actual size</td>
</tr>
<tr>
<td>1:5</td>
<td>Five times smaller than actual size</td>
</tr>
<tr>
<td>1:10</td>
<td>Ten times smaller than actual size</td>
</tr>
</tbody>
</table>

Choosing the correct scale

Each plan within a set of project drawings shows lots of things that are all different sizes. For example, a site plan shows the boundaries of the block, which are obviously much bigger than one of the kitchen walls. But the builder will require a lot more information to construct the kitchen wall, so a detail drawing might be done for that at a much larger scale to show this construction information. The choice of which scale to use for a plan is determined by several factors including:

- the size of what is to be drawn
- the amount of detail the drawing needs to show.

The person drawing the plans will choose the most suitable scale to show the required level of detail for the builder or construction worker while still fitting the whole drawing on one page, and not leaving a lot of blank wasted space around the drawing.
Interpreting scaled drawings

You should always use the written dimensions when getting sizes from drawings, unless there’s a very good reason not to. On a well-drawn set of drawings, all the sizes the builder needs will be written somewhere on the drawings. Occasionally, however, if a required dimension is not written, the tradesperson will need to ‘scale’ from the drawing. This means that a scale rule is used to measure directly from the drawings.

Activity 4.3 Tips for scaling

Discuss, then fill in the blanks.

Check what _____________________________ has been used for a particular drawing.

The photocopying process sometimes results in drawings being slightly smaller or larger than the original. This means that there’s no guarantee that the sizes you scale will be _____________________________.

Scaling should only be done when you’re certain that a written dimension is _____________________________.

Using a scale rule

Scale rules are usually white and made of plastic. They have a different scale printed along each edge. Some have a single scale per edge, and others have two scales combined on one edge. Different brands may vary in the way the scales are grouped. A scale rule can be triangular or flat, like a standard ruler.

On the top edge of the rule below, the scales are 1:1 and 1:100, so the dimensions they show differ by a factor of 100.
Another scale rule edge is shown below. In this case, the dimensions differ by a factor of 10 (1:50 is 10 times larger than 1:500).

Why do you think the manufacturer has put more than one scale on each edge of the rule?

To measure something to scale, put the zero mark on the left-hand edge of what you are measuring, and read the length at the right-hand edge, as shown below.

Activity 4.4 Measure the rectangle

Look at the image of the scale rule and the rectangle above and answer the following questions.

Tip: At 1:50 scale, 1 mm will equal 50 mm. At 1:500 scale, 1 mm will equal 500 mm.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>How long is the rectangle at a scale of 1:50?</td>
<td></td>
</tr>
<tr>
<td>How long is it at a scale of 1:500?</td>
<td></td>
</tr>
</tbody>
</table>

Occasionally you may need to draw something yourself in order to explain part of the construction to a colleague. Knowing how to use a scale rule will enable you to do it accurately.

Now it's time to practise reading a scale rule.
Activity 4.5 Reading a scale rule

Below is a section of a scale rule. Write the sizes indicated by each of the arrows. An example has been done for you.

7 mm and 700 mm

and

and

and

and

and

and

and

and
Activity 4.6 Measuring lines with a scale rule

The lines shown below are drawn to various scales. The scale of each line is shown to its left. Use your scale rule to measure each line and write its scale length in the box to the right of it. An example has been done for you.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Line</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:50</td>
<td></td>
<td>2300</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activity 4.7 Measuring shapes with a scale rule

Use the appropriate side of your scale rule to work out the dimensions of the shapes below indicated by arrows. Write each answer neatly next to the dimension arrows.

Scale 1:5

Scale 1:10
Scale 1:50
Read and interpret plans and specifications

CPCCCM2001A
Section 5 – Abbreviations and symbols

Introduction

Some drawings need to convey a lot of information. To avoid confusion and to save space, abbreviations and symbols are used. These are standardised (used all over Australia), and you’ll find that you soon become used to interpreting what they mean.

In this section you’ll be introduced to some of the more common abbreviations and symbols used in construction drawings.

Performance criteria

3.1 Construction symbols and abbreviations are recognised.

3.2 Legend is located on project drawings, and symbols and abbreviations are correctly interpreted.

Abbreviations

Abbreviations can be created in different ways. In some cases, the word is shortened. Examples include ‘ENS’ for ensuite and ‘CPBD’ for cupboard.

In other cases, initials are used. Examples include ‘WIR’ for walk-in robe and ‘WC’ for water closet (toilet).

There might be several recognised abbreviations for the same thing. For example, you may see ‘brickwork’ shortened to BRK, BWK or just BK.

If you come across a new abbreviation in a drawing and you aren’t sure what it means, have a look at where it is in the drawing as that will often give you a clue.

If you see ‘WM’ on a plan and don’t know what it means, but it’s in the laundry, what do you think it might stand for?
Activity 5.1 Interpreting abbreviations

Here are some common abbreviations found in architectural plans. Write what you think each one means underneath it.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIT</td>
<td>CPBD</td>
</tr>
<tr>
<td>WIR</td>
<td>WC</td>
</tr>
<tr>
<td>MH</td>
<td>GPO</td>
</tr>
<tr>
<td>PLST</td>
<td>CONC</td>
</tr>
<tr>
<td>RWP</td>
<td>BM</td>
</tr>
</tbody>
</table>

Symbols

Like abbreviations, symbols are used instead of words on drawings to save space. There are a lot of them, but they’re standardised (drawn the same way each time) to avoid confusion, so don’t worry. Some of them look a lot like what they represent. For example, the symbol:

indicates a hotplate in the kitchen.

Others are more obscure. The symbol:

indicates that this is ‘window 8’.

Some cross-sections have a ‘filling’ that symbolises what material is to be used. In drafting terms this is called ‘hatching’. For example, this hatching:

indicates that it is a concrete member (perhaps a footing).
Activity 5.2 Interpreting symbols

Below are some common symbols found in architectural plans. Write what you think each one represents underneath it.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WH (Ward)</td>
</tr>
<tr>
<td></td>
<td>F (Floor)</td>
</tr>
<tr>
<td></td>
<td>D (Door)</td>
</tr>
</tbody>
</table>

Note: The actual symbols are not visible in the text.
Activity 5.3 Drawing symbols

Below is a list of common features found on most house plans. For each one, neatly draw the standard symbol for that feature.

<table>
<thead>
<tr>
<th>Bath (in plan)</th>
<th>Hand basin (in plan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double doors (in plan)</td>
<td>Double doors (in elevation)</td>
</tr>
<tr>
<td>Brick wall (in section)</td>
<td>Ground level (earth) (in section)</td>
</tr>
<tr>
<td>Horizontal sliding window (in elevation)</td>
<td>Top-hinged window (in elevation)</td>
</tr>
<tr>
<td>Dressed timber (in end section)</td>
<td>Sawn timber (in end section)</td>
</tr>
</tbody>
</table>
Legends

A legend is a list of symbols used in a drawing and their meanings. Not all drawings have a legend; they tend to be used to explain less used or specialised symbols. Electrical, hydraulic and engineering drawings commonly have legends.

The legend shown here is from a site plan. Without this legend, the symbols on the drawing could be misinterpreted.

LEGEND

- T.B.M.
- WATER METER
- TELSTRA PIT
- COMMUNICATIONS PIT
- POWER DOME
- SEWER MAINTENANCE SHAFT
- SEWER PROPERTY CONNECTION
- TOP OF BANK
- CHANGE IN GRADE
- LIMESTONE RETAINING WALL
- ROAD KERB/EDGE
- ROAD CENTRE

Reproduced or adapted with the permission of WA Country Builders.
Read and interpret plans and specifications

CPCCCM2001A
Section 6 – Specifications

Introduction

A specification is a written document that forms part of the description of the building to be constructed. It supplements the information on the drawings and, like the drawings, is a legal part of the contract between the client and the builder.

A specification might only be a few pages long for a small project such as an extension to a house, or it might be a multi-volume set of bound books for a big project such as a shopping mall or high-rise building.

For a large commercial or industrial project there may be a specification for the architectural features, and additional specifications for the plumbing, electrical and mechanical requirements of the job. For house construction, one specification booklet is usually sufficient.

Performance criteria

1.3 Quality requirements of company operations are recognised and adhered to.

1.4 Environmental requirements and controls are identified from job plans, specifications and environmental plan.

2.2 Amendments to specifications are checked to ensure currency of information and conveyed to others where appropriate.

6.1 Job specifications are identified from drawings, notes and descriptions.

6.2 Standards of work, finishes and tolerances are identified from the project specifications.

6.3 Material attributes are identified from specifications.
The purpose of a specification

Drawings are the best way to convey most of the information required for a building project, but a specification is needed to explain things that cannot be included clearly in the drawings. Specifications are commonly used to communicate the following.

- Fixtures and fittings to be used, where things like dimensions, colour or model number are important – for example, ‘Acme De Luxe clawfoot bath, 1675 mm, white’.
- To provide instructions to the builder or tradespeople for how something is to be done. For example, drawings might show that internal walls are to have a plaster finish, but it is the specification that tells the plasterer how – ‘bring walls to a reasonable flat surface by the application of a cement render float coat while the plaster is setting’. Instructions can also relate to regulations – ‘all lintels shall be galvanised treated, in accordance with BCA Clause 3.3.3.4’.
- To provide instructions to the builder about things that may not be part of the finished building but that nevertheless need to happen during the project – for example, safety barriers, disposal of rubbish or protection of adjoining properties.

Specifications usually include a clause about making good any damage to footpaths, fences and other amenities in the vicinity of the project. There will also be a clause that deals with the general quality of the materials and workmanship to be used. This usually reads something like:

All materials are to be new and of best quality and all work is to be carried out to best practice and to the relevant Australian Standard® where one applies.

Tolerances

The specification includes tolerances for the project. Tolerances are the allowable variations from the stated values or performance levels for any element of the project. In many cases, tolerances for a particular product or service are included in the relevant Australian Standard®. Examples of tolerances include things like:

- how flat or plumb a concrete surface should be
- how wide the mortar joints in brickwork can be
- allowed shrinkage in timber
- allowed twisting or bending of doors
- allowed cracking in plasterboard or hard plaster finishes
- level of grout finish in tiled areas.
If an aspect of construction is crucial on a particular project, for reasons of appearance or function, a more stringent tolerance can be included in the project documentation to alert the affected trade that they need to be more precise than usual in this instance. As this will usually mean more work, it will often add to the cost of that part of the project.

Activity 6.1 Misreading specifications

Jeremy was about halfway through tiling the bathroom at the new house on Diamond Crescent. The building supervisor, Jim, walked into the bathroom and noticed the tiles had the wrong finish. He said to Jeremy, ‘Hang on, mate. Those tiles aren’t right!’ Jeremy said, ‘Yes, they are!’

Jim said, ‘Sorry, mate. Check your specifications.’ So Jeremy checked, and sure enough, the tiles were supposed to be gloss white. Liam, his boss, had misread the specifications and ordered matte white by mistake.

Who do you think should take responsibility for this mistake, and why?

__

How could mistakes like this be avoided?

__

Layout

The specification (or ‘speci’) for a house is divided into sections (like short chapters) that each deal with a specific trade that will be involved in the project. The sections are usually arranged in the same order that the job will be done in – starting with excavator, concreter and bricklayer through to painter, floor coverer and landscaper at the end.

Each section may contain detailed descriptions specific to that job or it may just contain general instructions about workmanship, quality and so on. In that case, it will refer to a schedule at the end of the specification. The schedule will have details for a particular job; for example, sizes of skirtings, paint finishes, types of doors, brand of stove, colour of bath and so on.
Here is an example of part of section 7 of a specification relating to the brickwork.

7. **Brickwork**

7.1 **Face bricks**

Bricks supplied shall be standard face $230 \times 110 \times 76$ mm or (as stated on the colour selection form) run of kiln bricks as supplied by the manufacturer. Brickwork shall be constructed in accordance with AS 3700. Face bricks selected will be from the builder’s standard allowance.

Note: Bricks have only one true face and it is the owner’s responsibility to make himself/herself aware of the inconsistency or texture where double-face or single-leaf brickwork is nominated.

7.2 **Single-leaf brickwork**

Due to the porous characteristics of the brickworks, there will be degrees of moisture penetration into the internal face of an external single-leaf wall. It will be the owner’s responsibility to advise the builder if this is not acceptable.

7.3 **Internal walls**

Internal walls are to be masonry brickwork which is laid in accordance with AS 3700 or according to accepted sound practice.

A section called ‘preliminaries’ at the start of the specification deals with general things, such as the extent of the work, temporary services, the job sign, site sheds and toilets, temporary fences or hoardings and access for the client during construction.

In project-home building – where the same model is built over and over for different clients – they may use a standard specification and add to that an addendum that includes the selections and specific details for each client.
Changes

Sometimes changes, called amendments, might be made to the specification. Amendments could relate, for example, to changes to materials or products used or methods of carrying out specified work. They should be clearly marked so that everyone who needs to notices them. Amendments usually have to be signed or initialled by both the builder and the client to show they both agree.

On rare occasions, the specification may conflict with the drawings. For example, the specification may call for the front door to have a glass panel in the top half, yet the elevation may show no glass in the door. In this case, the builder should contact the architect or client and ask for clarification.

Costing

A section in the specification will deal with ‘provisional sums’ and ‘prime costs’.

Provisional sum items are things like the oven, bath, toilet suite, tiles and so on, which may not have been selected by the time the contract was signed. In that case, the builder will allow a certain amount in the contract (perhaps $600 for the oven and $40 per square metre for the ceramic tiles). When these items are eventually selected by the client, the contract price will be adjusted up or down according to the actual cost.

Prime costs are those costs that the builder can’t reasonably be expected to put an exact figure on when tendering for the job. For example, in certain areas the builder may allow a prime cost of so much per cubic metre if rock is encountered during the excavation work. If none is found, then the client doesn’t pay any extra, but if it is, the builder will be reimbursed for any extra costs that may arise.
Read and interpret plans and specifications

Activity 6.2 Reading specifications

Here is part of a specification for a concreter. Get together with a partner and discuss the following questions. When you've both agreed on an answer for each one, write it into the spaces provided.

Concrete shall be mixed and delivered in accordance with AS 1379. All concrete is to have minimum 20 MPa 28-day strength. Floors for the concrete raft slab and suspended slabs are to be steel-trowel finished.

Footings are to be 300 mm × 280 mm unreinforced concrete and the raft slab is to be a minimum of 85 mm finished thickness of concrete reinforced with F53 mesh or as specified by the engineer’s footing and slab detail. Waterproof membrane is to be 0.9 mm polythene. Strip footing and/or pier bases are to be unreinforced concrete.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. What Australian Standard® does the concrete have to comply with?</td>
<td></td>
</tr>
<tr>
<td>2. What is the minimum thickness of the raft slab?</td>
<td></td>
</tr>
<tr>
<td>3. Are the footings reinforced?</td>
<td></td>
</tr>
<tr>
<td>4. What type of finish has been specified?</td>
<td></td>
</tr>
<tr>
<td>5. What type of mesh has been specified?</td>
<td></td>
</tr>
</tbody>
</table>
Activity 6.3 Revision

In your own words, briefly answer the following questions.

1. Why is a specification needed as well as drawings?

2. Name two types of specifications.

3. Give two examples of items in a house project that can better be described in a specification than on a drawing.

4. Give two examples of instructions to a builder about how they are to conduct the construction of the project in line with the organisation’s standards, quality requirements and environmental considerations.

5. What is a prime cost item?

6. Give an example of something that would be a provisional sum item.

7. What do you think could happen if a subcontractor is not aware of amendments to a specification?
8. What type of material finish(es) would you expect to find in:
 a) a residential bathroom

 ..

 ..

 b) a residential lounge room.

 ..

 ..

9. How would you identify, and to whom would you report, any faults in tools, equipment or materials?

 ..

 ..

10. Which document(s) would you consult to determine tolerances for the flooring on a project?

 ..

 ..
Section 7 – Finding information on drawings

Introduction

This section will give you a chance to put into practice what you've learned so far about reading and interpreting plans.

<table>
<thead>
<tr>
<th>Performance criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Main types of plans and drawings used in the construction sector of the industry are identified.</td>
</tr>
<tr>
<td>1.2 Key features and functions of each type of drawing are identified.</td>
</tr>
<tr>
<td>2.1 Title panel of project documentation is checked to verify latest amendments to drawing.</td>
</tr>
<tr>
<td>3.1 Construction symbols and abbreviations are recognised.</td>
</tr>
<tr>
<td>3.2 Legend is located on project drawings, and symbols and abbreviations are correctly interpreted.</td>
</tr>
<tr>
<td>4.1 Orientation of the plan with the site is achieved.</td>
</tr>
<tr>
<td>4.2 Key features of the site are identified and located.</td>
</tr>
<tr>
<td>4.3 Access to site is gained and services, main features, contours and datum are identified.</td>
</tr>
<tr>
<td>5.1 Dimensions for project and nominated locations are identified.</td>
</tr>
<tr>
<td>5.2 Construction types and dimensions for nominated locations are identified.</td>
</tr>
<tr>
<td>5.3 Environmental controls and locations are identified.</td>
</tr>
<tr>
<td>5.4 Location, dimensions and tolerances for ancillary works are identified.</td>
</tr>
<tr>
<td>6.1 Job specifications are identified from drawings, notes and descriptions.</td>
</tr>
</tbody>
</table>

In the next four activities you need to find information on the relevant plan from the class set of drawings and write it down. Note that the right answer to some questions might be ‘not shown’.

We’ll start with the site plan.
Activity 7.1 Site plan information

Use the site plan in the class set. Get into teams of three or four, then use the site plan to find the information requested below and write your answers into the spaces provided. Discuss and compare your findings with your team.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What is the street address of the project?</td>
</tr>
<tr>
<td>2.</td>
<td>Who is the client?</td>
</tr>
<tr>
<td>3.</td>
<td>What is the width of the block at the front boundary?</td>
</tr>
<tr>
<td>4.</td>
<td>What is the depth of the block?</td>
</tr>
<tr>
<td>5.</td>
<td>What is the floor level (FL or FFL) of the house?</td>
</tr>
<tr>
<td>6.</td>
<td>What is the front setback (distance from front boundary to nearest part of the house)?</td>
</tr>
<tr>
<td>7.</td>
<td>What is the width of the driveway?</td>
</tr>
<tr>
<td>8.</td>
<td>What is the driveway to be paved with?</td>
</tr>
<tr>
<td>9.</td>
<td>Where is the clothes hoist to be situated?</td>
</tr>
<tr>
<td>10.</td>
<td>Is the driveway crossover part of the contract?</td>
</tr>
<tr>
<td>11.</td>
<td>How far from the left-hand (or right-hand) boundary is the house?</td>
</tr>
<tr>
<td>12.</td>
<td>Which direction does the front of the house face?</td>
</tr>
<tr>
<td>13.</td>
<td>How wide is the garden path?</td>
</tr>
<tr>
<td>14.</td>
<td>What are the existing boundary fences made of?</td>
</tr>
<tr>
<td>15.</td>
<td>What is the RL of the datum point (or TBM)?</td>
</tr>
<tr>
<td>16.</td>
<td>What environmental controls and locations did you identify?</td>
</tr>
<tr>
<td>17.</td>
<td>What dimensions and tolerances for ancillary works did you identify?</td>
</tr>
</tbody>
</table>
Now it’s time to look at the floor plan.

Activity 7.2 Floor plan information

Use the floor plan in the class set. Find the information requested below and write it into the spaces provided.

1. What is the width of the main bedroom (Bed 1)?

2. How many downpipes (DPs or RWPs) are there?

3. What size (width × depth) is the WIR in the main bedroom?

4. How wide is the kitchen window?

5. How wide is the WC door?

6. What depth are the shelves in the built-in robes?

7. How wide is the garage door?

8. How many bedrooms are there?

9. The rear external tap is on the outside of which room’s wall?

10. How long is the bath?

11. What is the overall width of the house?
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>How long (wide) is the outside wall nearest the front boundary?</td>
</tr>
<tr>
<td>13.</td>
<td>Where is the electric meter box located?</td>
</tr>
<tr>
<td>14.</td>
<td>Where is the water heater located?</td>
</tr>
<tr>
<td>15.</td>
<td>What size (width × length) are the external brick piers?</td>
</tr>
<tr>
<td>16.</td>
<td>Where is the manhole into the roof space located?</td>
</tr>
<tr>
<td>17.</td>
<td>How thick are the internal walls?</td>
</tr>
<tr>
<td>18.</td>
<td>What is the slope (pitch) of the roof?</td>
</tr>
<tr>
<td>19.</td>
<td>What are the internal dimensions (width × length) of the garage?</td>
</tr>
<tr>
<td>20.</td>
<td>How many external doors (doors leading outside) are there?</td>
</tr>
</tbody>
</table>
Next, we will work with the elevations.

Activity 7.3 Elevations information

Use the elevations in the class set. Find the information requested below and write it into the spaces provided.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What are the external walls made from (eg brick, boards, corrugated iron)?</td>
</tr>
<tr>
<td>2.</td>
<td>What is the floor-to-ceiling height?</td>
</tr>
<tr>
<td>3.</td>
<td>What is the slope (pitch) of the roof?</td>
</tr>
<tr>
<td>4.</td>
<td>What is the height of the toilet window?</td>
</tr>
<tr>
<td>5.</td>
<td>What is the width of the Bed 2 window?</td>
</tr>
<tr>
<td>6.</td>
<td>What is the height of the Bed 2 window?</td>
</tr>
<tr>
<td>7.</td>
<td>At what height above floor level is the meter box?</td>
</tr>
<tr>
<td>8.</td>
<td>What finish is applied to the gable part of the roof (if there is one)?</td>
</tr>
<tr>
<td>9.</td>
<td>What is the roof covering?</td>
</tr>
<tr>
<td>10.</td>
<td>What type(s) of windows are included in the house? How do they open?</td>
</tr>
</tbody>
</table>
Finally, we will read and interpret the electrical plan.

Activity 7.4 Electrical plan information

Use the electrical plan in the class set. Find the information requested below and write it into the spaces provided.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What type of light fitting(s) does the kitchen have?</td>
</tr>
<tr>
<td>2.</td>
<td>How many external lights are there?</td>
</tr>
<tr>
<td>3.</td>
<td>How many GPOs are there in the main bedroom?</td>
</tr>
<tr>
<td>4.</td>
<td>At what height are the GPOs in the laundry?</td>
</tr>
<tr>
<td>5.</td>
<td>How many fluorescent lights are there in the house?</td>
</tr>
<tr>
<td>6.</td>
<td>Where is/are the TV point(s) located?</td>
</tr>
<tr>
<td>7.</td>
<td>How many exhaust fans are there in the house?</td>
</tr>
<tr>
<td>8.</td>
<td>Where is the switch for the rear outside light?</td>
</tr>
<tr>
<td>9.</td>
<td>At what height above the floor are the GPOs in Bed 2?</td>
</tr>
<tr>
<td>10.</td>
<td>How many smoke detectors are shown?</td>
</tr>
</tbody>
</table>
Section 8 – Plan-drawing and specification-writing activities

Introduction

This section is an optional component of the course. You will be advised by your lecturer whether this will be part of the course for your class or group. Your lecturer will provide any required learning materials and instructions.

These activities are not part of your assessment for this unit.
Read and interpret plans and specifications

CPCCM2001A
Annex A – Unit details

<table>
<thead>
<tr>
<th>Unit title</th>
<th>Read and interpret plans and specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptor</td>
<td>This unit of competency specifies the outcomes required to read and interpret plans and specifications relevant to construction operations. It includes the identification of types of plans and drawings and their functions, the recognition of commonly used symbols and abbreviations, the identification of key features and specifications on a site plan, the comprehension of written job specifications and the recognition of document status and amendment detail.</td>
</tr>
<tr>
<td>National code</td>
<td>CPCCCM2001A</td>
</tr>
<tr>
<td>Employability skills</td>
<td>This unit contains employability skills.</td>
</tr>
<tr>
<td>Prerequisite units</td>
<td>Nil</td>
</tr>
<tr>
<td>Application</td>
<td>This unit of competency supports achievement of basic reading and interpretation of plans and specifications commonly used in the construction industry.</td>
</tr>
</tbody>
</table>

Element 1 Identify types of drawings and their functions

1.1 Main types of **plans and drawings** used in the construction sector of the industry are identified.

1.2 **Key features** and functions of each type of drawing are identified.

1.3 **Quality requirements** of company operations are recognised and adhered to.

1.4 **Environmental requirements** and controls are identified from job plans, specifications and environmental plan.

Element 2 Recognise amendments

2.1 Title panel of **project documentation** is checked to verify latest amendments to drawing.

2.2 Amendments to **specifications** are checked to ensure currency of **information** and conveyed to others where appropriate.
Element 3 Recognise commonly used symbols and abbreviations

3.1 Construction symbols and abbreviations are recognised.

3.2 Legend is located on project drawings, and symbols and abbreviations are correctly interpreted.

Element 4 Locate and identify key features on a site plan

4.1 Orientation of the plan with the site is achieved.

4.2 Key features of the site are identified and located.

4.3 Access to site is gained and services, main features, contours and datum are identified.

Element 5 Identify project requirements

5.1 Dimensions for project and nominated locations are identified.

5.2 Construction types and dimensions for nominated locations are identified.

5.3 Environmental controls and locations are identified.

5.4 Location, dimensions and tolerances for ancillary works are identified.

Element 6 Read and interpret job specifications

6.1 Job specifications are identified from drawings, notes and descriptions.

6.2 Standards of work, finishes and tolerances are identified from the project specifications.

6.3 **Material attributes** are identified from specifications.
Required skills and knowledge

Required skills

- communication skills to:
 - enable clear and direct communication, using questioning to identify and confirm requirements, share information, listen and understand
 - read and interpret:
 - documentation from a variety of sources
 - drawings and specifications
 - use language and concepts appropriate to cultural differences
 - use and interpret non-verbal communication, such as hand signals

- identifying and accurately reporting to appropriate personnel any faults in tools, equipment or materials

- numeracy skills to apply measurements and make calculations, including heights, areas, volumes and grades

- organisational skills, including the ability to plan and set out work

- teamwork skills to work with others to action tasks and relate to people from a range of cultural and ethnic backgrounds and with varying physical and mental abilities

- technological skills to:
 - use a range of mobile technology, such as two-way radio and mobile phones
 - voice and hand signals to access and understand site-specific instructions.
Read and interpret plans and specifications

Required knowledge

- basic calculations of heights, areas, volumes and grades
- commonly used construction symbols and abbreviations
- construction terminology
- drawing conventions
- features of plans and elevations, including direction, scale, key, contours, symbols and abbreviations
- job safety analysis (JSA) and safe work method statements
- key features of formal job specifications
- processes for application of scales in plan preparation and interpretation
- project quality requirements
- site and equipment safety (OHS) requirements
- techniques for orienting/confirming the orientation of a plan.
Evidence guide

The evidence guide provides advice on assessment and must be read in conjunction with the performance criteria, required skills and knowledge, range statement and the Assessment Guidelines for the Training Package.

<table>
<thead>
<tr>
<th>Overview of assessment</th>
<th>This unit of competency could be assessed in the workplace or a close simulation of the workplace environment, provided that simulated or project-based assessment techniques fully replicate construction workplace conditions, materials, activities, responsibilities and procedures.</th>
</tr>
</thead>
</table>
| Critical aspects for assessment and evidence required to demonstrate competency in this unit | A person who demonstrates competency in this unit must be able to provide evidence of the ability to:
 • locate, interpret and apply relevant information, standards and specifications
 • comply with site safety plan, OHS regulations and state and territory legislation applicable to workplace operations
 • comply with organisational policies and procedures, including quality requirements
 • communicate and work effectively and safely with others
 • for a minimum of two different projects, read and interpret the project plans, including:
 ◦ confirmation of amendment status and drawings confirmed ‘for construction’
 ◦ orientation of plans to the ground
 ◦ six key features on both the plan and the site
 ◦ confirmation of six items of information from the title block of the project plans
 ◦ six construction dimensions, levels and locations from the project plans
 ◦ six ancillary works dimensions, levels and locations from the project plans
 • for a minimum of two formal specifications, identify the dimensions, material requirements and processes to be followed. |
| Context of and specific resources for assessment | This competency is to be assessed using standard and authorised work practices, safety requirements and environmental constraints. Assessment of essential underpinning knowledge will usually be conducted in an off-site context. Assessment is to comply with relevant regulatory or Australian standards’ requirements. Resource implications for assessment include:
 • an induction procedure and requirement
 • realistic tasks or simulated tasks covering the mandatory task requirements
 • relevant specifications and work instructions
 • tools and equipment appropriate to applying safe work practices
 • support materials appropriate to activity
 • workplace instructions relating to safe work practices and addressing hazards and emergencies
 • material safety data sheets
 • research resources, including industry-related systems information.
Reasonable adjustments for people with disabilities must be made to assessment processes where required. This could include access to modified equipment and other physical resources, and the provision of appropriate assessment support. |
<table>
<thead>
<tr>
<th>Method of assessment</th>
<th>Assessment methods must:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• satisfy the endorsed Assessment Guidelines of the Construction, Plumbing and Services Training Package</td>
</tr>
<tr>
<td></td>
<td>• include direct observation of tasks in real or simulated work conditions, with questioning to confirm the ability to consistently identify and correctly interpret the essential underpinning knowledge required for practical application</td>
</tr>
<tr>
<td></td>
<td>• reinforce the integration of employability skills with workplace tasks and job roles</td>
</tr>
<tr>
<td></td>
<td>• confirm that competency is verified and able to be transferred to other circumstances and environments.</td>
</tr>
</tbody>
</table>

Validity and sufficiency of evidence requires that:

• competency will need to be demonstrated over a period of time reflecting the scope of the role and the practical requirements of the workplace

• where the assessment is part of a structured learning experience the evidence collected must relate to a number of performances assessed at different points in time and separated by further learning and practice, with a decision on competency only taken at the point when the assessor has complete confidence in the person’s demonstrated ability and applied knowledge

• all assessment that is part of a structured learning experience must include a combination of direct, indirect and supplementary evidence.

Assessment processes and techniques should as far as is practical take into account the language, literacy and numeracy capacity of the candidate in relation to the competency being assessed.

Supplementary evidence of competency may be obtained from relevant authenticated documentation from third parties, such as existing supervisors, team leaders or specialist training staff.
Range statement

The range statement relates to the unit of competency as a whole. It allows for different work environments and situations that may affect performance. Bold italicised wording, if used in the performance criteria, is detailed below. Essential operating conditions that may be present with training and assessment (depending on the work situation, needs of the candidate, accessibility of the item, and local industry and regional contexts) may also be included.

<table>
<thead>
<tr>
<th>Plans and drawings include:</th>
<th>construction plans</th>
<th>cross-sectional plans</th>
<th>dimensions and notes</th>
<th>illustrations</th>
<th>longitudinal plans</th>
<th>project specifications</th>
<th>site plans</th>
<th>structural detail and specification providing illustrations and dimensions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key features of plans and specifications include:</td>
<td>characteristics</td>
<td>compatibility</td>
<td>construction</td>
<td>location</td>
<td>pattern dimension</td>
<td>quantities</td>
<td>sizes</td>
<td>type of product or service.</td>
</tr>
<tr>
<td>Quality requirements include relevant regulations, including:</td>
<td>Australian Standards®</td>
<td>internal company quality policy and standards</td>
<td>manufacturer specifications, where specified</td>
<td>workplace operations and procedures.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental requirements include:</td>
<td>clean-up management</td>
<td>waste management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Project documentation includes:** | • contracts
• drawings
• schedule of rates
• specifications
• standard procedures and practices
• supplementary specifications
• work schedules. |
| **Specifications include:** | • detail relating to materials and quality of work, quality assurance, nominated subcontractors, and provision of site access/facilities
• details relating to performance, including:
 ◦ characteristics
 ◦ material types
 ◦ standards of work
 ◦ tolerances
 ◦ treatments and finishes. |
| **Information includes:** | • diagrams or sketches and graphics
• instructions issued by authorised organisational or external personnel
• manufacturer specifications and instructions
• maps
• material safety data sheets (MSDS)
• memos
• organisation work specifications and requirements
• plans and specifications
• regulatory and legislative requirements pertaining to operations and the environment
• relevant Australian standards
• safe work procedures related to construction site operations
• signage
• verbal or written and graphical instructions
• work bulletins
• work schedules. |
| **Material attributes include:** | • characteristics
• construction requirements
• treatments and finishes
• types. |
Read and interpret plans and specifications

CPCCCM2001A
Annex B – Assessments

Assessment plan

The assessments suggested here for this unit are designed to assess your competency in the elements as listed in the unit details at Annex A to this guide. They are split into several parts, with each one testing specific areas of learning covered in the course.

All assessments are closed-book written tests done in class, ie you may not consult any notes or other texts.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment 1 Part A</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Written theory assessment.</td>
<td></td>
</tr>
<tr>
<td>Questions will require a short answer. You will need a scale rule for some of them.</td>
<td></td>
</tr>
<tr>
<td>Topics will be from Sections 1 and 2 of this guide.</td>
<td></td>
</tr>
<tr>
<td>Assessment 1 Part B</td>
<td>3, 5</td>
</tr>
<tr>
<td>Written theory assessment.</td>
<td></td>
</tr>
<tr>
<td>Questions will require a short answer. You will need a scale rule for some of them.</td>
<td></td>
</tr>
<tr>
<td>Topics will be from Sections 3, 4 and 5 of this guide.</td>
<td></td>
</tr>
<tr>
<td>Assessment 1 Part C</td>
<td>1, 5, 6</td>
</tr>
<tr>
<td>Written theory assessment.</td>
<td></td>
</tr>
<tr>
<td>Questions will require a short answer.</td>
<td></td>
</tr>
<tr>
<td>Topics will be from Section 6 of this guide.</td>
<td></td>
</tr>
<tr>
<td>You will be required to find information from a specification provided by your lecturer.</td>
<td></td>
</tr>
<tr>
<td>Assessment 2 Part A</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Written practical assessment.</td>
<td></td>
</tr>
<tr>
<td>You will be required to find information from a site plan and a floor plan provided by your lecturer.</td>
<td></td>
</tr>
<tr>
<td>Assessment 2 Part B</td>
<td>1, 2, 3, 5</td>
</tr>
<tr>
<td>Written practical assessment.</td>
<td></td>
</tr>
<tr>
<td>You will be required to find information from an elevations drawings and an electrical plan provided by your lecturer.</td>
<td></td>
</tr>
</tbody>
</table>

Note: Your lecturer may provide you with alternative assessments.
Individual learning and assessment needs

Learners have different learning styles and needs. Please let your lecturer know if there is anything that may have an effect on your learning.

Results and appeals

There is a process to be followed should you wish to appeal the result of your assessment. Please ask your lecturer for more information about this.
Assessment 1 – Written theory Part A

Introduction

This assessment is designed to assess your ability to:

• understand the various types of drawing used in the residential sector of the building and construction industry and what their purposes are
• understand the information found on title panels of drawings
• understand the system and conventions used to dimension construction drawings
• accurately use a scale rule to ascertain dimensions from drawings
• understand the main abbreviations and symbols used on construction drawings
• understand the layout and conventions used in written specifications and their relevance to the drawings.

Requirements and format

Assessment 1 is divided into three parts, A, B and C. You are required to answer a series of short-answer questions relevant to the above elements. Some questions require the measuring of lines with a scale rule to determine dimensions.

Materials and equipment

To attempt this assessment you will need:

• a scale rule
• pens, pencils, etc
• the assessment paper
• a specification (lecturer to provide).
CPCCCM2001A

Read and interpret plans and specifications

Assessment 1 – Written theory Part A

Name ___________________________ Date ___________

I have received feedback on this assessment.

Signature ___________________________ Date ___________

Assessor’s initials

© WestOne Services 2014

© BC2119

Annex B 5
Read and interpret plans and specifications

CPCCCM2001A
Assessment 1 – Written theory Part A

Section 1 – Drawing types

Below is a table with four types of drawings listed across the top, and 10 items of information that can be found on them listed down the left-hand side.

For each of the items of information, place a tick in the box below the type of drawing where you think you would find that information.

The first one has been done as an example, indicating that the overall width of a building can be found on the floor plan.

<table>
<thead>
<tr>
<th>Overall width of building</th>
<th>Site plan</th>
<th>Floor plan</th>
<th>Elevation</th>
<th>Electrical plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Width of driveway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Position of downpipes (RWPs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Type of windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Position of external lights</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Width of doors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Finished floor level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Pitch (slope) of roof</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Thickness of external walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Ceiling height</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Height of power outlets (GPOs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11. List three reasons why drawings are essential to the construction of a house.
 a) __
 b) __
 c) __

12. Why isn’t it necessary for the draftsperson to show details of every little thing to be built?
 __
 __
 __

13. List three pieces of information that you would expect to find on any site plan.
 a) __
 b) __
 c) __

14. Briefly explain what ancillary works are.
 __
 __
 __

15. How are elevations labelled?
 __
 __
 __

16. Environmental management is an essential part of any project. List three controls that might be required on a building project.
 a) __
 b) __
 c) __
Section 2 – Title panels

Below at right is the title panel from a drawing for a new house. In the spaces below, write the answers to the following questions. For some questions, ‘not shown’ may be the answer.

Amendments:

<table>
<thead>
<tr>
<th>Amendment Date</th>
<th>Amendment Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 6–10–14</td>
<td>Door 6 changed to FH opening</td>
</tr>
<tr>
<td></td>
<td>" Bulkhead to kitchen deleted</td>
</tr>
<tr>
<td>2 14–8–14</td>
<td>Door 12 widened to 1440</td>
</tr>
<tr>
<td>1 21–7–14</td>
<td>Window 17 added</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terrific Homes</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Main St Sandhurst 6399 Ph 9000 1212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Client:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr J K & Mrs M W Williams</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Residence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 132 Hillview Close</td>
</tr>
<tr>
<td>Oakville</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scale 1:100</th>
<th>Floor Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job No: 2014/15</td>
<td>Sheet 2 of 6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issue date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>14–05–2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Revision no 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drawn by J L W</td>
</tr>
</tbody>
</table>

17. Where is the house to be built? ____________________________

18. When was the house originally designed? ____________________________

19. Who is the builder? ____________________________

20. When was door 12 changed? ____________________________

21. Who will be the owner of the house? ____________________________

22. How many drawings are in the set? ____________________________

23. When was the most recent change made? ____________________________

24. When is the house due to be completed? ____________________________

End of Assessment 1 Part A
Read and interpret plans and specifications
CPCCCM2001A
CPCCCM2001A

Read and interpret plans and specifications

Assessment 1 – Written theory Part B

Name ___________________________ Date ____________

I have received feedback on this assessment.

Signature ___________________________ Date ____________

Assessor’s initials
Read and interpret plans and specifications
CPCCCM2001A
Assessment 1 – Written theory Part B

Section 3 – Scaled dimensions

Below are some lines drawn to various scales. Using your scale rule, carefully measure each line according to the scale shown to its left, and write down its length (in mm) in the box to the right of the line.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Line</th>
<th>Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25. 1:2</td>
<td>![Line 1:2]</td>
<td></td>
</tr>
<tr>
<td>26. 1:50</td>
<td>![Line 1:50]</td>
<td></td>
</tr>
<tr>
<td>27. 1:5</td>
<td>![Line 1:5]</td>
<td></td>
</tr>
<tr>
<td>28. 1:200</td>
<td>![Line 1:200]</td>
<td></td>
</tr>
<tr>
<td>29. 1:10</td>
<td>![Line 1:10]</td>
<td></td>
</tr>
<tr>
<td>30. 1:50</td>
<td>![Line 1:50]</td>
<td></td>
</tr>
<tr>
<td>31. 1:100</td>
<td>![Line 1:100]</td>
<td></td>
</tr>
<tr>
<td>32. 1:5</td>
<td>![Line 1:5]</td>
<td></td>
</tr>
<tr>
<td>33. 1:10</td>
<td>![Line 1:10]</td>
<td></td>
</tr>
<tr>
<td>34. 1:20</td>
<td>![Line 1:20]</td>
<td></td>
</tr>
</tbody>
</table>
35. Below are some details from drawings. The scale of each is shown.

Using your scale rule, write in the missing dimensions indicated by the arrows.

Scale 1:5

Scale 1:10

Scale 1:50
Section 4 – Symbols and abbreviations

Below are some symbols that are commonly used on construction drawings. Below each one, write what you think the symbol represents.

36. __
37. __
38. __
39. __
40. __
41. __
42. __
43. __
44. __
45. __
Below are some abbreviations that are commonly used on construction drawings. Next to each one, write what you think the abbreviation means.

<table>
<thead>
<tr>
<th></th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.</td>
<td>BWK</td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>SHR</td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td>WC</td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>GPO</td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>DP</td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td>SS</td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td>FGL</td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>WIR</td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td>CL</td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>HWU</td>
<td></td>
</tr>
</tbody>
</table>

End of Assessment 1 Part B
CPCCCM2001A

Read and interpret plans and specifications

Assessment 1 – Written theory Part C

Name ___________________________ Date ____________

I have received feedback on this assessment.

Signature ___________________________ Date ____________

Assessor’s initials
Read and interpret plans and specifications

CPCCCM2001A
Assessment 1 – Written theory Part C

Section 5 – Specifications

Below are five statements about specifications. Some are true and some are false. Indicate by circling either the word ‘True’ or ‘False’ the one you think applies to each statement.

56. A typical specification for a house will have all of these items in it:
 • type and colour of bricks
 • room sizes
 • window positions
 • door locks and hardware.
 True False

57. The specification for a job forms part of the legal contract that the builder has with the client.
 True False

58. Specifications are usually divided into sections representing the trades involved in the job, such as carpenter, bricklayer, painter, etc.
 True False

59. If the information in the specification about part of a job is different from what the drawings show, the builder has the choice of doing that part of the job either way.
 True False

60. The purpose of a specification is to describe in words information that is difficult to show on drawings.
 True False

The following questions refer to the specification supplied with this question paper. Find the information required and write your answers in the spaces provided.

61. What does the specification say to do if a measurement on the floor plan is different from that shown on the elevations?

62. Who pays for the water used during construction of the house?

63. What finish is the concrete floor slab to have?

64. What type of bricks are to be used for the windowsills?
65. How long is the warranty for the termite treatment to be?

66. There will be a variation to the contract if the sewer connection is deeper than what?

67. How many shelves will the pantry have?

68. What size are the wall tiles to be?

69. Are there any amendments noted in the specification? If so, what do they state?

70. Are there any environmental controls in the specifications? If so, state or describe one example here.

71. Find an example of a requirement to follow an Australian Standard®. State:
 the number of the Standard ____________________
 the material or process the requirement relates to ____________________
 Briefly explain the requirement.

72. In your own words, explain what the term ‘tolerance’ means, and give two examples of where tolerances might apply.

End of Assessment 1 Part C
Assessment 2 – Practical Part A

Introduction

This assessment is designed to assess your ability to:

• find required dimensions on various types of construction drawing
• find and interpret written information on various types of construction drawing.

Requirements and format

Assessment 2 is divided into two parts, A and B. You are required to answer a series of short-answer questions relating to a set of drawings that your lecturer will provide.

Materials and equipment

To attempt this assessment you will need:

• a scale rule
• pens, pencils, etc
• the assessment paper
• a set of drawings (lecturer to provide)
• a set of drawing standards (lecturer to provide).
Read and interpret plans and specifications

CPCCCM2001A
CPCCCM2001A

Read and interpret plans and specifications

Assessment 2 – Practical Part A

Name ____________________________ Date ____________

I have received feedback on this assessment.

Signature ____________________________ Date ____________

Assessor’s initials ____________________________
Read and interpret plans and specifications

CPCCM2001A
Assessment 2 – Practical Part A

Section 1 – Site plans

Find the following information on the site plan provided, and write your answers in the spaces below.

Note that some of the information may not appear on the plan. For these questions, write ‘not shown’.

1. What is the depth of the building block?
2. What is the width of the driveway?
3. What does ‘FFL’ on the outline of the house mean?
4. Which direction does the garage face?
5. What is the ‘setback’ of the house?
6. What is the address of the site?
7. Where is the datum (TBM) located?
8. State the highest and lowest points on the site. Use the correct units (m or mm).
9. What is the width of the house?
10. List three key features of the site plan.

__
__
__
Section 2 – Floor plans

Find the following information on the floor plan provided, and write your answers in the spaces below.

Note that some of the information may not appear on the plan. For these questions, write ‘not shown’.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. What is the width of the main bedroom (Bed 1)?</td>
<td></td>
</tr>
<tr>
<td>12. How many downpipes are there?</td>
<td></td>
</tr>
<tr>
<td>13. What size (width × depth) is the WIR in the main bedroom?</td>
<td></td>
</tr>
<tr>
<td>14. How wide is the kitchen window?</td>
<td></td>
</tr>
<tr>
<td>15. How wide is the door to Bed 2?</td>
<td></td>
</tr>
<tr>
<td>16. How wide is the fridge recess?</td>
<td></td>
</tr>
<tr>
<td>17. How wide is the garage door?</td>
<td></td>
</tr>
<tr>
<td>18. How many bedrooms are there?</td>
<td></td>
</tr>
<tr>
<td>19. What is the floor covering to the kitchen?</td>
<td></td>
</tr>
<tr>
<td>20. How wide is Bed 3?</td>
<td></td>
</tr>
<tr>
<td>21. What is the overall depth of the house?</td>
<td></td>
</tr>
<tr>
<td>22. How long (ie wide) is the outside wall nearest the back boundary?</td>
<td></td>
</tr>
<tr>
<td>23. How many 720-wide doors are there in the house?</td>
<td></td>
</tr>
<tr>
<td>24. Over which rooms is the water heater located?</td>
<td></td>
</tr>
<tr>
<td>25. What is the thickness of the concrete floor slabs?</td>
<td></td>
</tr>
<tr>
<td>26. Where is the manhole into the roof space located?</td>
<td></td>
</tr>
<tr>
<td>27. How thick are the internal walls?</td>
<td></td>
</tr>
<tr>
<td>28. How high are the skirting boards?</td>
<td></td>
</tr>
<tr>
<td>29. How wide is the robe recess in Bed 2?</td>
<td></td>
</tr>
<tr>
<td>30. What is the size of the brick piers to the alfresco area?</td>
<td></td>
</tr>
</tbody>
</table>

End of Assessment 2 Part A
CPCCCM2001A

Read and interpret plans and specifications

Assessment 2 – Practical Part B

Name ___________________________ Date _______________

I have received feedback on this assessment.

Signature ___________________________ Date _______________

Assessor’s initials

© WestOne Services 2014
Read and interpret plans and specifications

CPCCCM2001A
Assessment 2 – Practical Part B

Section 3 – Elevations

Find the following information on the elevations provided, and write your answers in the spaces below.

Note that some of the information may not appear on the plan. For these questions, write ‘not shown’.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. What is the pitch (slope) of the roof?</td>
<td></td>
</tr>
<tr>
<td>32. How many brick courses high is the window to the private lounge?</td>
<td></td>
</tr>
<tr>
<td>33. What is the bulkhead beam in the multimedia room lined with?</td>
<td></td>
</tr>
<tr>
<td>34. How many brick courses high are the ensuite windows?</td>
<td></td>
</tr>
<tr>
<td>35. How many brick courses above floor level is the bottom of the window to the multimedia room?</td>
<td></td>
</tr>
<tr>
<td>36. What is the floor-to-ceiling height?</td>
<td></td>
</tr>
<tr>
<td>37. What is the finish to the eaves?</td>
<td></td>
</tr>
<tr>
<td>38. What cladding does the gable above the garage door have?</td>
<td></td>
</tr>
</tbody>
</table>

Section 4 – Electrical plan

On the electrical plan provided, find the following information and write it in the spaces provided. Note that some information asked for may not be shown on the electrical plan provided.

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>39. How many lights are there in the living room?</td>
<td></td>
</tr>
<tr>
<td>40. Where is the switch for the kitchen lights located?</td>
<td></td>
</tr>
<tr>
<td>41. How many mm above floor level is the GPO for the fridge?</td>
<td></td>
</tr>
<tr>
<td>42. How many lights are there outside the house?</td>
<td></td>
</tr>
<tr>
<td>43. How many GPOs are there in the garage?</td>
<td></td>
</tr>
</tbody>
</table>

End of Assessment 2 Part B
Read and interpret plans and specifications

CPCCM2001A
Annex C – Plans and drawings
Read and interpret plans and specifications

CPCCM2001A
Plans and drawings

PERSPECTIVE 1

PERSPECTIVE 2

Not to scale
Read and interpret plans and specifications

CPCCCM2001A
Read and interpret plans and specifications

CPCCCM2001A
Read and interpret plans and specifications

CPCCCM2001A
Read and interpret plans and specifications
Plans and drawings

Detail W1

Detail W2

Section W-W

V1 Gutter Detail - V1

Page 11 of 15

© WestOne Services 2014
Read and interpret plans and specifications

CPCCCM2001A
READ AND INTERPRET PLANS AND SPECIFICATIONS
CERTIFICATE II IN BUILDING AND CONSTRUCTION (PATHWAY – TRADES)
CPCCCM2001A

LEARNER’S GUIDE

DESCRIPTION
This learner’s guide will take you through the process of learning how to find and interpret information in typical drawings, plans and specifications for building and construction projects. It contains a mix of content and hands-on activities that support the unit CPCCCM2001A Read and interpret plans and specifications from the Certificate II in Building and Construction (Pathway – Trades). The course, and this guide, focuses on the skills and knowledge required to get your career started as a tradesperson in the building and construction industry.

The topics covered in this guide include:
• the types of drawings used and the kind of information they show
• title panels and the information they contain
• dimensions – how they’re shown and how to read them
• paper sizes and common scales that are used
• abbreviations and symbols found on drawings
• written specifications and documentation.

You will also learn how to find specific information on different types of drawings. Suggested assessment activities are included.

EDITION
Edition 1, 2014

TRAINING PACKAGE
CPC08 Construction, Plumbing and Services Training Package

COURSE / QUALIFICATION
Certificate II in Building and Construction (Pathway – Trades)

UNIT OF COMPETENCY
CPCCCM2001A Read and interpret plans and specifications

RELATED PRODUCTS
This resource is one in a series that covers all six core units for the Certificate II in Building and Construction (Pathway – Trades) qualification. Please refer to the WestOne product catalogue for more information.